SPI練習問題-問2(確率)

確率の問題。

[設問1]3人で同時にじゃんけんをする。少なくとも2人が同じ手を出す確率はいくらか?

[設問2]箱の中に赤玉5つと白玉4つが入っている。一度に二つ取り出したとき、すべて白玉である確率はいくらか?

解答と解説

使用する公式:
確率の公式

確率は上の公式を使用して算出することができますが、簡単な問題は力技でやった方が早い場合がある。

設問1解説:
各々は、グー、チョキ、パーの3通りの出し方があります。よって、3人がじゃんけんをした場合の全組合せパターン数は、

 全組合せパターン数 = 3 × 3 × 3 = 27パターン

次に少なくとも2人が同じ手を出すということは、2人が同じ手を出す、もしくは3人とも同じ手を出すという事である。ようは、全員がバラバラの手を出すパターン以外ということと同じである。

全員がバラバラの手を出すパターンは、G(グー)、C(チョキ)、P(パー)としたとき、

 G C P
 G P C
 C G P
 C P G
 P G C
 P C G

上記の6通りだけになる。よって、全27パターン中、6通りが全員バラバラの手を出すパターンなので、21パターン(27-6=21)が、少なくとも2人が同じ手を出すパターン数となる。これを公式①に代入すると、求めたい確率が出る。

 少なくとも2人が同じ手を出す確率 = 21/27 = 7/9

解答:7/9

設問2解説:
確率を求めるためには、公式①で分かる通り、全パターン(組合せ)数と、その事象が起こりうるパターン数を出す必要がある。

まずは、赤玉5つ、白玉4つの計9つの球がある箱の中から、2つを取り出したときの全組み合わせの数を求める。組み合わせ数を求める場合は、次の公式を利用する。

確率の公式

確率計算

よって、全組合せ数は、36種類あることがわかる。次に、白玉4つから2つを取り出す組み合わせ数は、下記の計算より6組だと分かる。

確率

よって、求める確率 = 6/36 = 1/6

解答:1/6

コメントを残す

*

このページの先頭へ