SPI練習問題-問5(仕事算・水槽算)

仕事算の問題。次の設問についてこたえよ。

[設問1]ビラ配りのアルバイトをした。これを1人ですると小橋君は4日間、田上君では8日間かかる。この仕事を小橋君と田上君が2人で一緒に日曜日から始めると何曜日に終わるか?

[解答群]
 月曜日
 火曜日
 水曜日
 木曜日
 金曜日
 土曜日
 日曜日
 いずれでもない



[設問2]屋根の修理作業をするのに、哲也君だけでは6日かかり、博史君だけでは9日かかる。この仕事を最初は2人で2日間行い、残りを博史君1人ですることになった。作業が終わるまであと何日かかるか?

[解答群]
 3日
 4日
 5日
 6日
 7日
 8日
 9日
 10日

解答と解説

ポイント:
下記の式は仕事算の計算で頻繁に使用するので抑えておきましょう。
○全体の仕事量 = 人数 x 時間(日数)
○1日の仕事量 = それぞれの仕事量の和
○全体を1とすると、1日の仕事量 = 1/日数

設問1の解説:
全体の作業量を1とする。

小橋君1人で1日でできる作業量は、1/4。
田上君1人で1日でできる作業量は、1/8。
小橋君と田上君の2人で1日でできる作業量は、3/8(1/4+1/8)。

2人で作業した場合、作業に終える日数をN日とした場合、

(3/8)x N = 1
 N = 1 ÷(3/8)
   = 1 x 8/3 = 8/3 ≒ 2.6

よって、作業を終えるのに約2.6日かかることが分かる。日曜日から開始なので、2.6日目は火曜日になります。よって、求める解答は、火曜日のB。

解答:B



設問2の解説:
全体の作業量を1とする。

哲也君1人で1日でできる作業量は、1/6。
博史君1人で1日でできる作業量は、1/9。
小橋君と田上君の2人で1日でできる作業量は、5/18(1/6+1/9)。

最初の2日は、2人で作業を行ったので、その作業量は次の通り。

 5/18 x 2 = 5/9

よって、残り作業量は、4/9となります。この残り作業4/9を博史君1人で行う場合、かかる日数をNとすると次の式が成り立ちます。

(1/9)x N = 4/9

この式より、

 N = (4/9)÷(1/9)
   = (4/9)x 9 = 4 = 4日

よって、作業が終わるまでにはあと4日必要になる。

解答:B

コメントを残す

*

このページの先頭へ